Hadoop, BigInsights, and Your Future

What you need to know to succeed
Agenda

• Big Data Overview
• Hadoop History, Basics, and Terms
• Hadoop and BigInsights
• Technical Information
• Demo

• Goal: Show something useful, quickly
Not The Goal!!!
Not Your Typical Presentation

• “Fresh” presentation style and format
• Please interrupt if you have a question
• Please answer questions, out loud, when asked 🙂
World is Changing

The resulting explosion of information creates a need for a new kind of intelligence

...to help build a Smarter Planet
Data Explosion Quiz

2 Billion Internet users by 2011

4.6 Billion Mobile Phones World Wide

1.3 Billion RFID tags in 2005

30 Billion RFID today

Twitter processes 7 terabytes of data every day

Facebook processes 10 terabytes of data every day
Big Data Overview

• There are actually two forms of Big Data…
Data in Motion
Data at Rest
Data Warehouse Challenge:

• Organize Operational Data
• Quickly Answer Known Questions
• Make Decisions from the Analytics
Big Data Challenge: Find New Insights

- Predict weather patterns to plan optimal wind turbine usage and placement
- Detect life-threatening conditions at hospitals in time to intervene
- Make risk decisions based on real-time transactional data
- Identify criminals and threats from disparate video, audio, and data feeds
Real-World Examples

Data in Motion
- Hospital in Toronto
- Real-time Vitals Monitoring

Data at Rest
- Vestas Energy
- Wind Turbine Placement
IBM Watson is a breakthrough in analytic innovation, but it is only successful because of the quality of the information from which it is working.
Big Data and Watson

Big Data technology is used to build Watson’s knowledge base

Watson uses the Apache Hadoop open framework to distribute the workload for loading information into memory.

- Approx. 200M pages of text (To compete on Jeopardy!)

Watson technology offers great potential for advanced business analytics

- POS Data
- CRM Data
- Social Media
- InfoSphere BigInsights

Distilled Insight
- Spending habits
- Social relationships
- Buying trends

Advanced search and analysis
Potential for You

• Ask yourself a few simple questions…
 • What data gets thrown away?
 • Which details are missing from DB2 or the Data Warehouse?
 • What data sources are not being used?
Covering the Three Vs

IBM’S BIG DATA APPROACH
Three Vs

• A Big Data solution must cover...
Velocity
Variety
IBM’s Big Data

• Data in Motion
 • Focuses on Velocity and Variety
• Data at Rest
 • Focuses on Volume and Variety
Data in Motion

- IBM InfoSphere Streams
- Current version is 2.0
- Established Leader
- Real-world customer examples
Why InfoSphere Streams?

• Processing of **Sensor** Data
 • GPS, Video, Environmental Sensors, etc.
• "**Data Exhaust**" processing
 • Web Server/Application Logs, Network, etc.
• Processing **High-data-rate** information
 • Financial Transactions, Call Details, On-the-Fly speech to text, real-time scoring
Data at Rest

- IBM InfoSphere BigInsights
- Hadoop-based platform
- IBM adds Enterprise-readiness
 - Removes Single Point of Failure
 - Provides Spreadsheet Interface
 - Ease of Use and Monitoring
Hadoop Basics, History, and Terminology

HADOOP OVERVIEW
Hadoop History

- **Google’s Challenge:**
 - Store and Process the Entire Internet
 - Provide Quick Search Results

- **Solution:** Required Something New
 - Divide and Conquer
 - Open Source Result: Hadoop
Terminology

- Open Source
- Committer
- Contributor
Open Source & IBM

Leveraging Open Source Innovation ...

...Committing ...

Big Data Platform

...Contributing ...

...and Giving Back

Open Source & IBM

Apache Commons
http://commons.apache.org/

PIG
ZooKeeper

Hadoop

Lucene™

HD: HBase

AVRO™

Eclipse

jaql

Unstructured Information Management Architecture
An Apache Project.
Terminology

- Open Source
- Committer
- Contributor
- XML / HTML / Java
- Java Script / JSON
- Data
 - Structured Data
 - Unstructured Data
Data Formats

Example XML

```html
<html>
<head>
  ...
</head>
<body>
  <h1>XML Example</h1>
  <p>Example XML Document</p>
  <pre>
&lt;?xml version="1.0" encoding="ISO-8859-1"?&gt;
&lt;!-- Edited by XMLSpy --&gt;
&lt;CATALOG&gt;
  &lt;CD&gt;
    &lt;TITLE&gt;Hide your heart&lt;/TITLE&gt;
    &lt;ARTIST&gt;Bonnie Tyler&lt;/ARTIST&gt;
    &lt;COUNTRY&gt;UK&lt;/COUNTRY&gt;
    &lt;COMPANY&gt;CBS Records&lt;/COMPANY&gt;
    &lt;PRICE&gt;9.90&lt;/PRICE&gt;
    &lt;YEAR&gt;1988&lt;/YEAR&gt;
  &lt;/CD&gt;
  &lt;CD&gt;
    &lt;TITLE&gt;Still got the blues&lt;/TITLE&gt;
    &lt;ARTIST&gt;Gary Moore&lt;/ARTIST&gt;
    &lt;COUNTRY&gt;UK&lt;/COUNTRY&gt;
    &lt;COMPANY&gt;Virgin records&lt;/COMPANY&gt;
    &lt;PRICE&gt;10.20&lt;/PRICE&gt;
    &lt;YEAR&gt;1990&lt;/YEAR&gt;
  &lt;/CD&gt;
&lt;/CATALOG&gt;
</pre>
</body>
</html>
```

Example JSON

```json
[
  { "CATALOG" : [
    { "CD" : [
      { "Title":"Hide your Heart",
        "Artist":"Bonnie Tyler",
        "Country":"UK",
        "Company":"CBS Records",
        "Price":9.90,
        "Year":1988 },
      { "Title":"Still got the blues",
        "Artist":"Gary Moore",
        "Country":"UK",
        "Company":"Virgin Records",
        "Price":10.20,
        "Year":1990 }
    ]
  ]
]
```
Terminology

- Open Source
- Committer
- Contributor
- XML / HTML / Java
- Java Script / JSON
- Data
 - Structured Data
 - Unstructured Data
- Parallel Processing
- Big Data
- Data in Motion
- Data at Rest
- Enterprise-Ready
- Hadoop
 - HDFS
 - Map/Reduce
What is Hadoop?

- Free Open Source framework
- Batch Oriented and Read-Intensive
- Contains Two Main Components
 - HDFS
 - Map / Reduce
HDFS

- Hadoop Distributed File System

Diagram:
- Application
 - POSIX API
 - Local File System
 - HDFS API
 - HDFS Interface
- Name Node
 - Data Node
 - Data Node
 - Data Node
Map / Reduce

Map

- Input split into pieces
- Worker nodes process individual pieces in parallel
- Each worker node stores its result in its local file system where a reducer is able to access it

Reduce

- Data is aggregated (‘reduced” from the map steps) by worker nodes
- Multiple reduce tasks can parallelize the aggregation
- Optional Combiner Function can be run to reduce data transfers
Hardware

• Central Processing Unit
• Memory
• Disk
Relational Databases

- Powerful Processors
- Fewer Total nodes/boxes in a cluster
- Large Quantity of Reliable Disks
- More-Expensive Hardware
- Approach
 - Spread *Data* Across Nodes
 - Support SQL

GOAL: Answer Known Questions
Hadoop

• Fewer Powerful Processors *per box*
• More nodes/boxes within a cluster
• Smaller Quantity of Disks *per box*
• Commodity/Less expensive Hardware
• Parallel Processing Approach
 • Spread *processing* across nodes
 • Support Map/Reduce

GOAL: Answer Unknown Questions
Comparison

- Relational
- Hadoop
Map / Reduce Example

File
- File Part 1
- File Part 2
- File Part 3
- File Part 4

Split

Map

LOCAL

Shuffle

Reduce

part1

part2

part3
Big Difference = Schema

- Relational
 Schema on Load
 Data

- Hadoop
 Schema on Run
 Data
Read-Time Quiz

• Max Read Speed of 7,200 RPM Drive?
 • 80 MB/sec

• How long will it take to read 1TB
 • 1 disk = 3.4 hours
 • 10 disks = 20 mins
 • 100 disks = 2 mins
 • 1,000 disks = 12 secs
Typical Node

- CPU
- 2 quad-core 2-2.5GHz
- 16-24 GB ECC RAM
- Disk = 4 x 1TB SATA disks
- Network = Gigabit Ethernet
IBM’s Enterprise-Ready, Big Data Solution

HADOOP AND BIGINSIGHTS
Hadoop Software

- Hadoop’s Additional Components
 - Languages
 - Java, Pig, Hive, JAQL
 - Other Components
 - Zookeeper, Lucene, Hbase, Oozie
- Open Source Software Downloaded and Installed separately
BigInsights

Enterprise Edition

- GPFS-SNC Native Support
- Spreadsheet-style data exploration
- Job and Workflow Management
- Productivity and Efficiency Improvements
- Integration with InfoSphere Warehouse
- Integration with Netezza
- Integration with DB2
- Large Scale Indexing
- Text Analytics
- Machine Learning
- Tiered Terabyte Pricing

Basic Edition

Free Download, Easy Installation
24x7 Web Support, 10TB Limit
Paid Support Option
Why IBM Enterprise?

- GPFS-SNC as an option to HDFS
- Analytics (Big Sheets, Text Analysis)
- Single Install/Monitoring = Ease of Use
- BigInsights Version 1.3 Enhancements
HDFS

- Hadoop Distributed File System
- Single Point of Failure
Big Sheets
Single Install

Summary

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install type</td>
<td>Standalone install</td>
</tr>
<tr>
<td>Configure SSH</td>
<td>Yes</td>
</tr>
<tr>
<td>BigInsights Admin Group ID</td>
<td>biadmin</td>
</tr>
<tr>
<td>BigInsights Admin User ID</td>
<td>biadmin</td>
</tr>
<tr>
<td>BigInsights installation directory</td>
<td>/opt/ibm/biginsights</td>
</tr>
<tr>
<td>BigInsights data/log directory</td>
<td>/var/ibm/biginsights</td>
</tr>
<tr>
<td>BigInsights console security</td>
<td>Install the BigInsights console with no user authentication</td>
</tr>
<tr>
<td>BigInsights console port</td>
<td>8080</td>
</tr>
<tr>
<td>Configure Jaql UDF server</td>
<td>Yes</td>
</tr>
<tr>
<td>Jaql UDF server port</td>
<td>8200</td>
</tr>
<tr>
<td>Derby port</td>
<td>1528</td>
</tr>
<tr>
<td>BigInsights orchestrator port</td>
<td>8888</td>
</tr>
<tr>
<td>Cache directory</td>
<td>/hadoop/mapred/local</td>
</tr>
<tr>
<td>Log directory</td>
<td>/var/ibm/biginsights/hadoop/logs</td>
</tr>
<tr>
<td>Map/Reduce system directory</td>
<td>/hadoop/mapred/system</td>
</tr>
<tr>
<td>Install HDFS</td>
<td>Yes</td>
</tr>
<tr>
<td>Shared POSIX File System Root</td>
<td></td>
</tr>
<tr>
<td>NameNode port</td>
<td>9000</td>
</tr>
<tr>
<td>NameNode HTTP port</td>
<td>50070</td>
</tr>
<tr>
<td>Name directory</td>
<td>/hadoop/hdfs/name</td>
</tr>
<tr>
<td>JobTracker port</td>
<td>9001</td>
</tr>
</tbody>
</table>
Monitor and Maintain
Version 1.3 Highlights

• “Apps” – Adhoc queries, Boardreader, etc.
• Eclipse Plug-ins – JAQL, Hive with SQL, MapReduce, Text Analytics
• Performance Improvements
 • Adaptive MapReduce
 • IBM’s LZO-like Compression
Background to the Demonstration

DEMO SETUP
Demo Background

• Data Source: Twitter
• Capture Tweets
• Analyze Tweet Quantity
• Analyze Tweet Content
Demo Software

• 64-bit Red Hat Enterprise Linux 6
• BigInsights EE v1.3
• InfoSphere Warehouse v9.7.3
• Cognos 10.1
Demo Flow

• Perform a Twitter Search
• Store tweets in BigInsights / Visualize Results in a Tag Cloud and Bar Chart
• Extract Summary data into InfoSphere Data Warehouse (View with Cognos)
• Analyze Trends in Tweet Quantity
• Use Big Sheets to view Tweet Text
Twitter Search
Demonstration of BigInsights with InfoSphere Warehouse, Cognos, and Big Sheets

DEMO
Last Quiz

• Big Data is…

• Data in **Motion**

• Data at **Rest**

• What are the Three Vs?

 • **Volume**, **Velocity**, and **Variety**

• Why IBM’s Enterprise Edition

 • **GPFS-SNC**, **Analytics**, **Ease of Use**
Go Try It Today

• Download BigInsights Basic Edition
 http://www.ibm.com/software/data/infosphere/biginsights/basic.html

• Review Twitter Search
 https://dev.twitter.com/docs/api/1/get/search

• Read Analyzing Big Data with JAQL
Resources

• Big Data University – Free Training
 http://bigdatauniversity.com/

• Powered by Hadoop
 http://wiki.apache.org/hadoop/PoweredBy

• IBM makes Big data easy for the Little Guy

• Understanding Big Data – Free PDF Book
Contact Information

• IBM Technical Sales
 Michael Nobles mnobles@us.ibm.com